
An Intelligent Decision Support System for
Production Planning in Garments Industry

Rui Ribeiro1,2[0000−0001−8078−4148], André Pilastri1[0000−0002−4380−3220], Hugo
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Abstract. In this paper, we propose an Intelligent Decision Support
System (IDSS) that combines prediction and optimization for produc-
tion planning. We worked with a company that provides software for the
garments Industry and that had access to real-world data related with
a client that works with subcontractors. Using an Automated Machine
Learning (AutoML) approach, we firstly target four predictive tasks that
are crucial to estimate production planning indicators. Then, we use his-
torical data and one of the predicted indicators to search for the best
subcontractor allocation plan, which minimize both the cost and pro-
duction time via an Evolutionary Multiobjective Optimization (EMO)
algorithm (NSGA-II), achieving interesting results.
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1 Introduction

Currently, there is a pressure in industries to increase efficiency (e.g., reduce
operating costs and time) in order to compete in their markets. One way is
to adopt an Intelligent Decision Support Systems (IDSS), which incorporate
Artificial Intelligence techniques to provide actionable knowledge from raw data
[2]. In this paper, we assume an IDSS for the garments Industry and that is based
in the concept of Adaptive Business Intelligence (ABI) [11], which combines
Machine Learning (ML), to predict relevant decision context variables, with
Modern Optimization (MO) [7], to search for the best decision choices (according
to one or more objectives).

There are some related works that employ MO methods to support pro-
duction plans in the textile industry. For instance, in [1] Genetic Algorithms
(GAs) were used to create production orders involving the spinning and weav-
ing areas of the fabrication process. GAs were also adopted in [12] to optimize
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job orders of textile production lines. A combination of GA with Simulated
Annealing was used by [13] to create energy efficient production orders. In an-
other study, NSGA-II was used by [10] to solve a multi-objective multi-site order
scheduling problem in the production planning stage with the consideration of
multiple plants, multiple production departments and multiple production pro-
cesses. More recently, [14] used a mathematical programming model to optimize
textile production considering diverse “green” goals (e.g., waste reuse, energy re-
cycling) and [3] optimized the master production scheduling using GA. Within
our knowledge, none of these works adopted a data-driven ABI approach that
combines predictive and prescriptive analytics, as provided by ML and MO al-
gorithms. In this paper, we follow such innovative ABI combination by using an
Automated Machine Learning (AutoML) [9] to first predict four important gar-
ment subcontractor decision variables. Then, we adopt historical data and one
of the predicted variables (production time) to feed an Evolutionary Multiob-
jective Optimization (EMO) that searches for the best subcontractor allocation
plan, simultaneously minimizing the total allocation cost and time.

2 Materials and Methods

2.1 Garment Data

The data was provided by INFOS, which is Portuguese software company that
works with several textile industry clients. The company developed an Enter-
prise Resource Plan (ERP) that supports the production of garments. The goal
of this research is to develop an IDSS based on the ABI concept and that will be
integrated into the INFOS ERP system, allowing it to automatically design gar-
ment subcontractor plans regardless of size of the company and the complexity
of the production order. The subcontractor selection is a non trivial task, since
is a large range of textile operations, each involving costs and delivery dates.
We collected all company garment related records, including purchase and man-
ufacturing orders, from 2016 to 2020. The data was then divided in three major
groups: purchase of raw material, manufacturing and subcontractor. Next, we
implemented an Extraction, Transformation, Load (ETL) process to select and
clean the data (e.g., removal of missing features and records with wrong dates).
All data processing procedures (including the ABI system) were implemented in
the Python language by the authors.

Table 1 describes the input features (Attribute), their description (Des-
cription), data Type, number of Levels and Domain values separated by
objective (four predictive targets and one optimization task). The final set of
input features was obtained after several iterations of predictive task executions.
The datasets for the predictive (regression) tasks include: Lead Time – 3,315
records; Production Time – 25,449 examples; Production Waste – 24,425 in-
stances; and Delivery Delays – 6,016 records. Finally, the optimization objective
(Production Plan) contains 5,500 records related with subcontractors.

Regarding the target output target variables for the predictive tasks, we
detected that the company does not have records of them, being necessary to
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Table 1. Description of the input features by objective.

Objective Attribute Description Type Levels Domain

Lead Time

Supp cod Supplier identification Integer 102 [14, 2265]
Date purch Date of purchase order Date 873 -
Rmat cod Raw material code String 188 -
Qty Quantity to buy Integer 876 [1, 11650]

Production
Time

Subc cod Subcontractor identification Integer 275 [0, 9999]
Mat cod Final product code String 846 -
Oper desc Textile operation String 93 -
Qty Quantity to produce Float 9356 [1, 97512]

Production
Waste

Mat cod Final product code String 864 -
Qty Quantity to produce Float 4646 [1, 13448.3]
Subc cod Subcontractor identification Integer 41 [8, 9996]
Rmat cod Raw material code String 1386 -

Delivery
Delays

Plan endate Planned date to end production Date 940 -
Mat cod Code of the final product String 205 -
Qty Quantity to produce Integer 3156 [3, 75838]

Production
Plan

Oper desc Textile operation String 94 -
Avgp cost Average cost of textile operation Float 47 [0.01, 1.75]

Price
Cost of textile operation for
given product per subcontractor

Float 247 [0.01, 11.60]

Subc cod Subcontractor identification Integer 293 [24, 2254]
Mat cod Code of the final product String 169 -

Capacity
Subcontractor production
capacity by textile operation

Integer 14 [100, 3000]

calculate them: Ldtime was obtained by subtracting the receiving date of a order
from the placement order date and if resulting value was negative that row was
discarded; for Prod days we create a function that subtracts the production finish
date from the planned production start date and outputs the number of working
days between the two dates and the if the number of days was negative that
row was discarded; in the case if Waste ratio we first subtracted the produced
quantity from the quantity to produce and if the resulting value was positive it
was changed to zero, afterwards we divided the absolute result by the quantity
to produce, multiplying the final result by 100; finally for Delay days we create a
function that subtracts the scheduled delivery date finish date from the delivery
date and outputs the number of working days between the two dates and the if
the number of days was negative it was changed to zero.Table 2 describes the
four output target variables with their description (Description), data type
(Type), number of levels (Levels) and domain values (Domain).

In terms of preprocessing, since the String variables had a high cardinally, we
employed a Label Encoder, in order to transform each level into a distinct nu-
meric value. This option provided better results when compared with the known
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Table 2. Description of the output target variables.

Target Description Type Levels Domain

Ldtime Days between delivery date and purchase date Integer 94 [0, 59]
Prod days Working days to produce a certain quantity Integer 47 [1, 63]
Waste ratio Percentage of wasted material Integer 247 [0, 100]

Delay days
Working days between scheduled delivery
date and delivery date

Integer 293 [0, 64]

One-Hot encoding, which created a very high number of input features. As for
the Date features, we adopted the proleptic Gregorian ordinal of a date, allowing
to provide a simpler numeric value. Then, all numeric inputs were normalized
by using a z-score standardization.

2.2 Intelligent Decision Support System

The proposed IDSS contains three main modules (Figure 1): data extraction
and processing, prediction and optimization. The first module is responsible for
receiving the garment data, selecting the features for each objective and then
creating the necessary input for prediction. The prediction module receives the
data separated by predictive task splitting it into training and test sets (data sep-
aration, according to the adopted cross-validation method). Then, it trains the
predictive models (model training), evaluating the models performance (model
evaluation), selecting and storing the best prediction model (model selection).
Then, the user inserts the data related to the lead time, using the respective
model to predict the number of days that will take to receive the raw materials
and can define a starting and end date for production. Finally the optimization
module receives the subcontractors data (Table 1), filtered by the product to
manufacture and the textile operations to execute, the quantity to produce and
maximum allowed dates (all provided by the user). Then, the MO algorithm uses
this data and also one of the predicted indicators (production time) to search
for the best subcontractor quantity allocation, aiming to reduce the total costs
and time.

To reduce the modeling effort during the development of the prediction mod-
ule, we adopted the H2O AutoML tool that provided good results in recent Au-
toML benchmark study [9]. The AutoML was configured to automatically select
the best regression model and its hyperparameters based on the best Mean
Absolute Error (MAE), using a internal 10-fold cross-validation applied over
the training data. Five different ML algorithms were searched by the tool: Ran-
dom Forest, Extremely Randomized Trees, Generalized Linear Models, Gradient
Boosting Machine and two Stacked Ensembles, one with best model of each fam-
ily and other with all trained models. An external 10-fold cross-validation was
executed to evaluate the ML models and the quality of the regression was ac-
cessed by using the MAE and Normalized MAE (NMAE) metrics. The lower the
values, the better are the predictions. The NMAE measure normalizes the MAE
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Fig. 1. Flow diagram describing the behaviour of the IDSS.

by the range of the output target on the test set, thus it provides a percentage
that is easy to interpret and that is scale independent.

A production order can be defined as a composition of tasks that are exe-
cuted sequentially. Each task can be represented by a set of candidate subcon-
tractors offering similar services, where each service can have a different value
in price and quantity per subcontractor. The subcontractor allocation is defined
as a multi-objective task (i.e., reduce both cost and time), thus we employ a
Pareto approach via an EMO algorithm, namely NSGA-II [7], as implemented
in the pymoo Python module [4]. NSGA-II is a multi-objective optimization al-
gorithm with three distinctive features: fast non-dominated sorting approach,
fast crowded distance estimation procedure and usage of a simple crowded com-
parison operator [8]. When compared with other hypervolume based algorithms
(e.g, SMS-EMOA), the NSGA-II algorithm tends to obtain competitive results
when only two or three objectives are optimized [6]. The algorithm returns a
population of non dominated solutions, each representing a different subcon-
tractor allocation and that is associated with a distinct cost-time trade-off. The
full subcontractor optimization can be defined in terms of x textile sequential
operations that need to be executed. For each operation, there are y candidates
(subcontractors) with different price and capacity parameters. Each solution is
naturally represented as a sequence of qi integer values (0 ≤ qi ≤ qmax), denot-
ing the quantity assigned for each subcontractor i, where qmax denotes the total
required quantity for operation x, and i ∈ {1, ...,M} and M represent the num-
ber of available subcontractors for operation x. We repair solutions by ignoring
any excess of subcontractor allocation (first allocated subcontractor is served
first) or by randomly distributing the deficit allocation to any of the available
subcontractors. Each solution is evaluated in terms of total production plan cost
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and allocation time. To compute these two goals, the EMO algorithm uses the
production time prediction (as shown in Figure 1). Once the Pareto curve is
optimized and for user selected trade-offs, we then compute the prediction indi-
cators of the remaining targets (e.g., production waste), such that the user can
further inspect the quality of the obtained solutions. In order to obtain a single
measure per Pareto curve, we selected the Hypervolume (HV) measure, which
represents the volume of the objective space when assuming a “worst” reference
point [5]. The higher the HV value, the better is the Pareto curve optimization.

3 Experiments and Results

The average of the external 10-fold iteration predictive results (in terms of MAE
and NMAE) are presented in Table 3. The table also presents the best ML
Model. In general, low regression errors were achieved, with the NMAE values
ranging from 3.6% to 9.2%. We particularly note that the best NMAE values
were obtained for the target that is directly used by the NSGA-II MO (Prod days
produces an average NMAE error of just 3.6%). The selected ML algorithm was
a stacked ensemble for three of the targets, while the Gradient Boosting Machine
obtained the best results for the production waste prediction.

Table 3. AutoML predictive results for each predicted target.

Target Model MAE NMAE

Ldtime Stacked Ensemble (All Models) 3.31 9.20%
Prod days Stacked Ensemble (All Models) 1.60 3.63%
Waste ratio Gradient Boosting Machine 4.24 4.24%
Delay days Stacked Ensemble (Best of each family) 3.57 5.71%

For the optimization experiments, we analyzed a production order of 10,000
units of a product that requires three textile operations (cutting, tailoring and
packaging) using one raw material. Using historical data, we then selected all the
subcontractors that could execute these operations along with the respective cost
and production capacity to create a subcontract allocation case study to utilize
in the experiments. In total, the case study includes 26 subcontractors (which
corresponds to the number of searched integers by the NSGA-II algorithm):
cutting - 4 candidates, tailoring – 8 candidates and packaging – 14 candidates
(4+8+14=26). To compute the cost and time associated with each solution, we
use four attributes from Table 1 (Subc cod, Capacity, Price andOper desc) and
also the predicted Prod days variable (see Table 2). We assumed some reasonable
assumptions (defined by the INFOS company): one subcontractor cannot execute
two or more tasks simultaneously, the subcontractor is always available and there
is no shortage of raw materials.

The two objective functions that need to be minimized are the Total Cost
(TC) and Total Production Time (TPT). The TC function is the sum of the
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multiplication of the assigned quantity to a individual by price of operation for
that individual operation. As for TPT, the function is the sum of the maximum
days required by each sequential operation (cutting, tailoring and packaging).
Since subcontractors can work simultaneously in the same operation (e.g., cut-
ting), we consider the slowest operator time (measured in terms of number of
days). Solutions that split the qi quantities by different operators for an opera-
tion will thus contribute for a lower TPT value. The lower bound is always zero
and the upper bound was set to the quantity to be produced. When needed, a
repair procedure is used to convert an unfeasible solution to a feasible one, see
Section 2.2.

The NGSA-II algorithm was configured with a check procedure that elimi-
nates duplicates, making sure that the mating produces offspring that are dif-
ferent from themselves and the existing population regarding their design space
values. A grid search was used to set the NSGA-II hyperparameters (e.g., the
population size was ranged within {50,100,150,...,500}), assuming the HV mea-
sure as the selection criterion and a reference point of (30 days, 20,000 EUR).
The best obtained values correspond to a normalized HV (when each objec-
tive is divided by the respective reference point value) of 0.71, which requires
157 seconds of execution time on an Intel Xeon processor. The selected NSGA-II
setup includes: population size of 100, two-point crossover with 90%, polynomial
mutation probability of 20% and total of 200 generations.

The left of Figure 2 shows the Pareto front obtained after 200 generations
when considering our case study. The Pareto front contains 100 solutions, with
the TPT ranging from 12 to 30 working days and TC ranging from 18,000 to
20,000 EUR. The right of Figure 2 shows the evolution of the NSGA-II algorithm,
in terms of the full HV measure (y−axis) through the executed 200 generations.

Fig. 2. Optimized Pareto front (left) and NSGA-II HV generation evolution (right).

The graph shows a substantial improvement that is obtained by NSGA-II.
In effect, in the first generation the HV measure is 4,700 (normalized value
of 0.2). After 200 generations, the value increased to 16,391 (normalized value
of 0.71), which corresponds to an improvement of 51 percentage points when
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considering the normalized HV scale. The results were shown to the INFOS
company, which provided a very positive feedback. In particular, the obtained
TPT and TC ranges were considered realistic. Moreover, the company signaled
that the obtained Pareto front provides a more richer set of trade-off solutions,
while also being faster to compute when compared with the currently adopted
manual subcontractor allocation.

4 Conclusions

We propose an IDSS that creates a textile production plan to allocate subcon-
tractors. The IDSS is based on the ABI concept that combines predictive (via
ML) with prescriptive (via MO) analytics in order to provide actionable knowl-
edge from raw data. The IDSS was designed to work with real-world data from
a Portuguese software company (INFOS) that works with diverse textile clients.
Firstly, an AutoML tool was adopted to automatically select the best ML model
among five algorithms when targeting four relevant allocation decision context
variables. Interesting results were achieved by the prediction models (error that
ranges from 3.6% to 9.2%). Then, we designed a MO model that uses one of
the predicted variables (production time) and historical data to automatically
allocate subcontractors to execute sequential operations associated with a tex-
tile order. The MO model, based on the NSGA-II algorithm, assumes a Pareto
approach and it was designed to simultaneously minimize the cost and time
to execute the order. To demonstrate the MO, we selected a case study that
includes four operations and 26 potential textile subcontractors.

The obtained results were shown to the INFOS company, which considered
them very positive. In future work, we intend to augment the IDSS by incor-
porating more problem-domain constraints, such as incorporating updated data
about the currenty availability of subcontractors. Furthermore, we wish to deploy
the designed IDSS into the INFOS ERP system, in order to get more valuable
feedback from a real environment usage.
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